1. Researcher uses music to manage networks
  2. The evolution of doors and windows
  3. Day trips from Newcastle
  4. Warwickshire the heart of English history
  5. Periodic table still influencing today’s research
  6. Engineers translate brain signals directly into speech
  7. Manchester’s cultural must-sees the top sights in a changing city
  8. Scratching beneath the surface of veneers
  9. Smart home tests first elder care robot
  10. Charting a path to cheaper flexible solar cells
  11. The Photographer and Architecture
  12. Multicolor holography technology could enable extremely compact 3D displays
  13. Highlights of hidden England – Lincoln and beyond
  14. Using drones to tackle climate change
  15. At the Flip of a Switch
  16. Variations in seafloor create freak ocean waves
  17. Scientists develop first fabric to automatically cool or insulate depending on conditions
  18. Going underground exploring the best sights below London
  19. Concrete Utopia
  20. New fuel cell concept brings biological design to better electricity generation
  21. Quantum transfer at the push of a button
  22. Physicists create exotic electron liquid
  23. Two days in Oxford
  24. Royal Academy expansion reveals hidden life of art schools
  25. Millions of tons of plastic waste could be turned into clean fuels, other products
  26. Speed of light toward a future quantum internet
  27. A perfect day in London
  28. Like something from Pompeii’ – Battersea Arts Centre’s scorching resurrection
  29. Converting Wi-Fi signals to electricity with new 2D materials
  30. After making history, NASA’s tiny deep-space satellites go silent
  31. Night sky Britain aurora-spotting and stargazing in England, Scotland and Wales
  32. London through the ages architectural insights into the capital’s history
  33. Fasting ramps up human metabolism, study shows
  34. Scientists find increase in asteroid impacts on ancient Earth by studying the Moon
  35. Artificial intelligence can identify microscopic marine organisms
  36. Living by the tides on Northumberland’s Holy Island
  37. HP is making a new VR headset with a super high resolution
  38. HOW A NEW SATELLITE CONSTELLATION COULD ALLOW US TO TRACK PLANES ALL OVER THE GLOBE
  39. An architectural tour of Liverpool’s fascinating history
  40. Patisandhika and Daniel Mitchell complete A Brutalist Tropical Home in Bali
  41. These genetic ‘goggles’ could help us engineer wildly resilient crops
  42. Best things to do in Yorkshire in spring
Researcher uses music to manage networks

As these networks become increasingly complex, a Saint Louis University researcher turns to sound as a simpler alternative to manage complicated network tasks.

Flavio Esposito, Ph.D., assistant professor of computer science at SLU, together with collaborator, Mary Hogan, a former SLU undergraduate now pursuing her doctoral degree at Princeton University, recently proposed this innovative traffic-management solution in Proceeding of the 17th ACM Workshop on Hot Topics in Networks.

“For several years, researchers have used the term ‘network orchestration’ as a metaphor,” the authors write. “In this paper, we make the metaphor reality; we describe a novel approach to network orchestration that leverages sounds to augment or replace various network management operations.”

Esposito was interested in exploring whether a simpler network management approach could solve common problems. Ideally, Esposito says, an out-of-band management network — a type of network management that is separate from the data that flows across the network — should be reliable, able to reach all devices in a datacenter, compatible with existing equipment, simple and inexpensive.

The researchers’ answer to this wish list is Music-Defined Networking.

Music-defined networking is a model in which network functions can be programmed in response to specific sound sequences (music), coming from real or virtual devices. The researchers explored both active applications, where network devices were programmed to emit a certain sound, and passive applications, where sounds produced by devices e.g., datacenter fans, are monitored to identify when they may have failed.

Using low-cost speakers, microphones and Raspberry Pi’s (small affordable computers designed for users to learn programming), the team augmented existing network components with sound capabilities.

“Unlike light, sound is not high speed but instead travels slowly. So, rather than looking at sound as a means of sending lots of data around a network, we’re looking at it for the network management tasks that happen, for example, in the physical space of the datacenter,” Esposito said.

In both a real and virtual network test environment, the researchers explored how music could be used for several network tasks, including datacenter server fan failure detection, authentication, load balancing and congestion notification.

“Nobody’s incorporating the capabilities of the human ear into network management,” Esposito said. “Sound has its limits — it’s noisy and doesn’t travel very far — but it’s almost completely underused right now. In addition to the human ear, machines can recognize a tune that serves as a signal.”

For instance, music can be used as a security system “doorbell” to warn that someone has accessed the network.

Malicious intruders often operate by trying every single “door” of entry into a network to find a way in. It can be very difficult to prevent, or even detect, such attacks. Using sound, researchers can create a code so that every time someone enters a virtual door, a human operator or computer would hear a new pattern of music as a warning.

Esposito sees promise in the use of sound and hopes to study music as a means of accomplishing additional network tasks.

“Sound-based network management has potential as an effective and inexpensive network management technique for many applications. Exploring all these sounds fun to me.”